The Effects of the 5 Ballet Foot Positions on Spinal and Lower Extremity Posture

Christy Solly
Teia Squires
Rosemarie Walsh

Acknowledgments

- Subjects - female students from Baylor and Girls Preparatory School
- Dr. David Levine – study design and statistical analysis
- Dr. Michael Whittle – data collection
- Dr. Debbie Ingram - help recruiting subjects

Foot Positions

- First Position
 - stand with heels together
 - legs and feet are turned out (as close to 180°)
 - turn out from the hips as much as possible
 - do not let knees or ankles twist
 - arms held in front of the body with a slight bend in the elbow

- Second Position
 - from first position, slide feet away from each other
 - feet are still turned out (close to 180°)
 - there is about a foot-length (the length of your foot) in between the heels
 - both arms abducted to about shoulder height, with slight bend in elbow

- Third Position
 - place the heel of one foot against the middle of the other foot
 - keep both legs turned out
 - one arm is abducted to shoulder height; slight bend in elbow
 - opposite shoulder is flexed and slightly abducted with flexed elbow

- Fourth Position
 - from third position, slide the front foot forward
 - there should be about half of a foot-length between the two feet
 - keep both legs turned out
 - one arm is held in full shoulder elevation with slight elbow flexion
 - opposite shoulder is flexed and slightly abducted with elbow flexed
Foot Positions1,2

- **Fifth Position**
 - place the outside of one foot against the inside of the other foot
 - feet should be toe-to-heel and heel-to-toe
 - both arms held in full shoulder elevation and slight elbow flexion

Turn-Out3-6

- **Turn-out** is defined as external rotation of the lower extremities3.
 - Achieved primarily at the hips to allow an ideal foot position of 180\textdegree.
 - Proper technique includes:
 - Hips externally rotated and augmented by external tibial torsion
 - A posterior pelvic tilt performed to decrease the amount of stress placed on the lumbar spine

Improper Technique3,4,7,8

- Primarily a result of:
 - Insufficient hip external rotation leading to an increase in lumbar lordosis
 - Possibly increasing stress on lumbar spine, medial knee and/or ankles
 - Coplan et al found that 70\% of subjects exceeded passive hip external rotation in ballet positions
- Additional contributions:
 - Abdominal weakness
 - Tight lumbosacral fascia
 - Combination of both

Pelvic Tilt and Lordosis9

- Levine & Whittle investigated the relationship between pelvic tilt and lordosis in normal standing among 20 females.
 - With anterior pelvic tilt, a significant increase in lordosis was found (p < 0.001)
 - Normal posture vs max anterior tilt – pelvic tilt increased 11.4\textdegree, lordosis increased 10.8\textdegree.
 - With posterior pelvic tilt, a significant decrease in lordosis was found (p < 0.001)
 - Normal posture vs max posterior tilt – pelvic tilt decreased 8.7\textdegree, lordosis decreased 9.0\textdegree.

Pelvic Tilt and Lordosis9

- Thus...
 - Voluntary assumption of pelvic tilt can significantly alter lumbar lordosis.
 - However, maximal pelvic tilt does not necessarily produce maximal changes in lordosis.
 - Lordosis also influenced by position of lower extremities and thoracic spine.

Pelvic Tilt and Lordosis6

- Day, Smidt, Lehman found similar relationship between pelvic tilt and lordosis.
 - Posterior tilt decreased absolute depth of lumbar curve
 - Significant difference (p < 0.05) compared to neutral and anterior tilt.
 - Anterior tilt increased the absolute depth of lumbar curve
 - Significant difference (p < 0.05) compared to neutral and posterior tilt.
Purpose/Objective

- To quantify changes between normal standing and the five foot positions of ballet, in the pelvis, lumbar spine, and lower extremities

Hypothesis

- We hypothesized that pelvic tilt and lumbar lordosis would increase in 1st and 5th positions compared to normal standing
- We also hypothesized that hip external rotation would increase in all five positions compared to normal standing

Subjects

- Experienced female ballerinas
 - Average 9.8 years of dance experience
 - 14-18 year olds
 - Sample of convenience from local dance companies
 - 14 subjects
- Exclusion criteria
 - Diagnosis of back pain or surgery
 - Current lower extremity injury

Methods and Procedures

- IRB approved and informed consent obtained
- Analysis of 1st - 5th positions vs. quiet standing
 - One trial of each quiet standing, 1st, and 2nd positions
 - One Right and Left trial of 3rd – 5th positions
- Subjects given verbal instruction to assume each position
 - “Assume your normal foot position with the appropriate arm position”

Vicon System

- 3-D motion analysis
- Used reflective targets affixed to skin
- Used 6 infrared cameras at 50 Hz
 - Detect positions of targets
 - Displayed as 3-D image on computer

Methods and Procedures

- 13 marker placements
 - L1
 - S2
 - Bilateral ASIS
 - Joint line of Knees
 - Base and Head of 2nd Metatarsals
- One investigator performed all marker placements to ensure reliability
Marker Placement

Results

- SPSS analytical software
- Repeated Measures ANOVA
- Pearson’s Correlation
- p<0.05 defined as statistically significant

Table: Foot Position vs Normal Stance

<table>
<thead>
<tr>
<th>Foot Position</th>
<th>Difference from normal stance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st position</td>
<td>P=.10</td>
</tr>
<tr>
<td>2nd position</td>
<td>P=.31</td>
</tr>
<tr>
<td>3rd position (C)</td>
<td>P<.01</td>
</tr>
<tr>
<td>3rd position (L)</td>
<td>P<.01</td>
</tr>
<tr>
<td>3rd position (R)</td>
<td>P<.01</td>
</tr>
<tr>
<td>4th position (C)</td>
<td>P<.01</td>
</tr>
<tr>
<td>4th position (L)</td>
<td>P<.01</td>
</tr>
<tr>
<td>4th position (R)</td>
<td>P<.01</td>
</tr>
<tr>
<td>5th position (C)</td>
<td>P<.01</td>
</tr>
<tr>
<td>5th position (L)</td>
<td>P<.01</td>
</tr>
<tr>
<td>5th position (R)</td>
<td>P<.01</td>
</tr>
</tbody>
</table>

Discussion: Pelvic Tilt

- Significant increase in anterior pelvic tilt found in 3rd-5th positions.
 - Suggest these positions may force pelvis into more anterior tilt because of the asymmetry of pelvis.
- Differed from hypothesis:
 - No significant increase in 1st position as proposed.
 - However, significant increase in 5th position as proposed.
 - Also noted significant increase in 3rd and 4th, not proposed.

Pelvic tilt

- Significant difference in pelvic tilt when compared to non-dancers.
 - Mean pelvic tilt in normal standing in this study = 22.5°.
 - Compared to average found by Levine and Whittle in non-ballet dancers = 11.3°.
 - Possible explanations:
 - Increased to attain ballet positions.
 - Tight low back.
 - Weak abdominals.
 - Tight hip flexors.
 - Long hamstrings.

Results: Lordosis

<table>
<thead>
<tr>
<th>Foot positions</th>
<th>Difference from normal standing</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st position</td>
<td>P=.46</td>
</tr>
<tr>
<td>2nd position</td>
<td>P=.01</td>
</tr>
<tr>
<td>3rd position (C)</td>
<td>P=.11</td>
</tr>
<tr>
<td>3rd position (L)</td>
<td>P=.11</td>
</tr>
<tr>
<td>3rd position (R)</td>
<td>P=.14</td>
</tr>
<tr>
<td>4th position (C)</td>
<td>P=.28</td>
</tr>
<tr>
<td>4th position (L)</td>
<td>P=.23</td>
</tr>
<tr>
<td>4th position (R)</td>
<td>P=.33</td>
</tr>
<tr>
<td>5th position (C)</td>
<td>P=.29</td>
</tr>
<tr>
<td>5th position (L)</td>
<td>P=.27</td>
</tr>
<tr>
<td>5th position (R)</td>
<td>P=.33</td>
</tr>
</tbody>
</table>
Discussion: Lordosis
- No significant increase in lumbar lordosis seen except in 2nd position
 - Not in agreement with hypothesis
 - Significance in 2nd possibly associated with arm position
- Trend found when comparing 3rd-5th position trials
 - Suggests influence of leg dominance

Results: Pelvic tilt and Lordosis
- Weak to moderate correlation between pelvic tilt and lordosis across all positions
 - \(R = -0.59 \) \(p < 0.015 \)
 - Possibly due to:
 - Not at end range of motion of the spine and pelvis
 - Use of different strategies to compensate for lack of external rotation (other than lordosis and tilt)

Discussion: Lordosis and Tilt
- Symmetrical vs. Asymmetrical lower extremity posturing
 - Significant increase in lordosis seen in symmetrical posturing, i.e. 2nd position
 - Significant increase in pelvic tilt seen more with asymmetrical posturing, i.e. 3rd-5th positions

Results: Hip External Rotation
<table>
<thead>
<tr>
<th>Foot position</th>
<th>(L) ER from normal</th>
<th>(R) ER from normal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st position</td>
<td>(P < .001)</td>
<td>(P < .001)</td>
</tr>
<tr>
<td>2nd position</td>
<td>(P < .001)</td>
<td>(P < .001)</td>
</tr>
<tr>
<td>3rd position (C)</td>
<td>(P < .001)</td>
<td>(P < .001)</td>
</tr>
<tr>
<td>3rd position (L)</td>
<td>(P < .001)</td>
<td>(P < .001)</td>
</tr>
<tr>
<td>3rd position (R)</td>
<td>(P < .001)</td>
<td>(P < .001)</td>
</tr>
<tr>
<td>4th position (C)</td>
<td>(P < .001)</td>
<td>(P < .001)</td>
</tr>
<tr>
<td>4th position (L)</td>
<td>(P < .001)</td>
<td>(P < .001)</td>
</tr>
<tr>
<td>4th position (R)</td>
<td>(P < .001)</td>
<td>(P < .001)</td>
</tr>
<tr>
<td>5th position (C)</td>
<td>(P < .001)</td>
<td>(P < .001)</td>
</tr>
<tr>
<td>5th position (L)</td>
<td>(P < .001)</td>
<td>(P < .001)</td>
</tr>
<tr>
<td>5th position (R)</td>
<td>(P < .001)</td>
<td>(P < .001)</td>
</tr>
</tbody>
</table>

Discussion: Hip External Rotation
- Significant change in bilateral hip external rotation in all positions vs. normal standing
 - \(p < 0.001 \)
 - Consistent with original hypothesis

Conclusions
- In comparing ballet foot positions to normal stance:
 - Significant increase in pelvic tilt in 3rd-5th positions
 - As proposed, there is a significant increase in hip external rotation
- Additionally,
 - Weak correlation between pelvic tilt and lordosis across all positions
 - Trend found when comparing 3rd-5th position trials
 - Suggests influence of leg dominance
Limitations

- Small sample size (n = 14)
- Uncontrolled extraneous variables
 - Consistency in foot positions
 - Influence of arm positions
- One time assessment

Suggestions for Future Projects

- Standardize foot placements
- Larger and more diverse sample
- Investigate influence of arm positions
- Repeated trials
- Measure hip external rotation with goniometric measurement for comparison
- Measurement of entire range of pelvic tilt available vs. appropriately matched controlled subjects

References